

# DATA SHEET DISC BRAKE SKP 180A

# Spring applied, pressure released disc brake

Dellner Bubenzer model SKP 180A spring applied, hydraulically released disc brake offers a reliable and safe method of braking linear or rotary motion.

The brake consists of two symmetrical cylinder Housings and can be supplied with or without a support.

Each Housing has two cylindrical guide pins that transmit the tangential braking force from the brake lining to the brake housing and support. As a result, any radial forces on the brake pistons are minimized which contributes to longer brake life.

Four springs in each Housing retract the brake pads from the disc when pressure is applied.



The disc spring pack must be adjusted to compensate for brake lining wear and to maintain full brake capacity. An extension of the brake piston through the adjustment nut gives an easy visual way to tell when adjustment is needed.

| Model        | Tangential<br>braking force F<br>[N] <sup>1)</sup> |                    | Releasing pressure | Balancing<br>pressure<br>[bar] 5) | Airgap between brake disc and lining [mm] |                    | Estimated life of disc spring pack [no. of strokes] |                     | Weight [kg] |
|--------------|----------------------------------------------------|--------------------|--------------------|-----------------------------------|-------------------------------------------|--------------------|-----------------------------------------------------|---------------------|-------------|
|              | max. <sup>2)</sup>                                 | min. <sup>3)</sup> |                    |                                   | max. <sup>6)</sup>                        | min. <sup>7)</sup> | max. <sup>8)</sup>                                  | min. <sup>9)</sup>  |             |
| SKP 180A-100 | 141 000                                            | 100 800            | 130                | 95                                | 2x 2,0                                    | 2x 4,0             | > 2x10 <sup>6</sup>                                 | > 2x10 <sup>6</sup> | 315         |
| SKP 180A-130 | 170 300                                            | 131 100            | 155                | 115                               | 2x 2,0                                    | 2x 4,0             | > 2x10 <sup>6</sup>                                 | 701 000             | 315         |
| SKP 180A-170 | 208 300                                            | 170 300            | 180                | 140                               | 2x 2,0                                    | 2x 4,0             | 1 590 000                                           | 136 000             | 315         |
| SKP 180A-190 | 226 800                                            | 189 400            | 190                | 155                               | 2x 2,0                                    | 2x 4,0             | 593 000                                             | 45 000              | 315         |

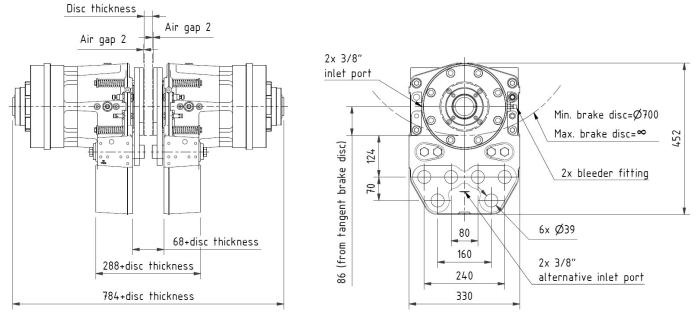
NOTE: All sizes within range has a total friction area of 1200  $\mathrm{cm}^2$  / total allowable wear volume of 1200  $\mathrm{cm}^3$ 

<sup>1)</sup> Calculated with an average frictional coefficient  $\mu$ =0,42. Consideration has not been taken for external factors.

<sup>2)</sup> Braking force with correctly adjusted disc spring pack.

<sup>3)</sup> Braking force with maximum recommended air gap before adjustment is needed.

<sup>4)</sup> Pressure to fully release brake.


<sup>5)</sup> Nominal pressure to balance an adjusted brake.

<sup>6)</sup> Air gap for correctly adjusted brake.

<sup>7)</sup> Maximum recommended air gap before adjustment is needed.

<sup>8)</sup> Valid for minimum spring pack compression.

<sup>9)</sup> Valid for maximum spring pack compression.



Maximum Shaft flange diameter = Brake Disc diameter øD – 440 mm

## **TORQUES**

The braking torque is calculated from the following formula:

$$M_{brake} = \frac{F \times (D_s - 2h)}{2}$$

q = number of brakes

F1 = braking force according to the table on page 1 [N]

p = pressure [bar]

Ds = brake disc diameter [m]

h = distance disc periphery to piston center [m] (SKP 180: 0,086)

| Model        | Tangential braking |         | Disc diameter D <sub>S</sub> |        |         |         |         |         |         |         |  |
|--------------|--------------------|---------|------------------------------|--------|---------|---------|---------|---------|---------|---------|--|
|              | force F [N] 1)     |         | [mm]                         |        |         |         |         |         |         |         |  |
|              | max. 2)            | min. 3) | ø800                         | ø1000  | ø1200   | ø1500   | ø1800   | ø2000   | ø2250   | ø2500   |  |
|              | max.               |         | •                            | ,      | ,       | ,       | ,       |         |         |         |  |
| SKP 180A-100 |                    | 100 800 | 31 600                       | 41700  | 51800   | 66 900  | 82 000  | 92 100  | 104 700 | 117 300 |  |
|              | 141 000            |         | 44 200                       | 58 300 | 72 400  | 93 600  | 114 700 | 128 800 | 146 400 | 164 100 |  |
| SKP 180A-130 |                    | 131 100 | 41 100                       | 54 200 | 67 300  | 87 000  | 106 700 | 119 800 | 136 200 | 152 600 |  |
|              | 170 300            |         | 53 400                       | 70 500 | 87 500  | 113 000 | 138 600 | 155 600 | 176 900 | 198 200 |  |
| SKP 180A-170 |                    | 170 300 | 53 400                       | 70 500 | 87 500  | 113 000 | 138 600 | 155 600 | 176 900 | 198 200 |  |
|              | 208 300            |         | 65 400                       | 86 200 | 107 000 | 138 300 | 169 500 | 190 300 | 216 400 | 242 400 |  |
| SKP 180A-190 |                    | 189 400 | 59 400                       | 78 400 | 97 300  | 125 700 | 154 100 | 173 100 | 196 700 | 220 400 |  |
|              | 226 800            |         | 71 200                       | 93 800 | 116 500 | 150 500 | 184 600 | 207 200 | 235 600 | 263 900 |  |

- 1) Calculated with an average frictional coefficient  $\mu$ =0,42. Consideration has not been taken for external factors.
- 2) Braking force with correctly adjusted disc spring pack.
- 3) Braking force with maximum recommended air gap before adjustment is needed.

#### **OPTIONS**

- Proximity switches for on/off, pad wear or "time to adjust" indication.
- Terminal box for switches.
- Protection cover for indicators.
- Tube connection set (connects the two cylinders to one connection point).
- Supports in different configurations.
- Brake pads in alternative materials.
- Seals in alternative materials.
- Customer specific colour.

### SUITABLE APPLICATIONS

The Dellner Bubenzer models SKP are suitable wherever safety brakes are needed, for example in the following types of applications:

Cranes Conveyors **Emergency stops** Winches Wind mills Parking applications

#### **DELLNER BUBENZER AB**